What does it take to make a 3D / CGI Object look Photorealistic?

Through my own experiments I have observed that the understanding of light is fundamental to achieving photorealism and it seems that many other 3D practitioners share this opinion.

Within the 3D environment, three aspects of light need to closely replicate their real-world counterparts:

  1. Light needs to illuminate the surface of a 3D object in a realistic way.
  2. The 3D object needs to prevent light from hitting other objects in the scene and create shadows.
  3. Light needs bounce off the 3D models in the form of reflections.

1. Light needs to illuminate the surface of a 3D object in a realistic way


High Dynamic Range Images are a useful tool for creating photorealstic 3D renders as they create a natural light source and can also be used as an environment that appears within reflections. When using HDR Images, it’s useful to first light a scene by applying textures that have a solid colour of 50% grey to the 3D models. This allows the observer to adjust the exposure of the surrounding environment, replicating the light that was present when the HDRI was captured, before creating other textures.

Warm / Cold Lighting

When creating artificial lights, one should observe the colour temperature of those lights. Quite often, a warm (orange/yellow) light is used as a key light, and a cold (blue) light is used as a fill light. This is because our eyes are familiar with seeing the sun cast shadows whilst the blue sky casts soft light over the shadowed areas.

Colour Temperature

A 3D artist in search of photorealism should create lights that have the same colour temperature as their real world counterparts. The following is a small selection of real world lights and their colour temperature.

  • Candle flame: 1900°Kelvin
  • 100‐watt household bulb: 2865°Kelvin
  • Daylight: 5600°Kelvin

If a 3D artist in pursuit of photorealism was creating a directional light that was intended to emulate a sun, then the virtual light’s colour temperate should match that of its real world counterpart, i.e. approximately 5,600°Kelvin (depending on the time of day etc).

Volumetric Light

Any visible light within a 3D scene is created using volumetric lighting. A common use of volumetric lighting is to replicate a key light penetrating a dusty environment (More on dusty environments later).

IES Lighting

Even better than trying to match the correct colour temperature, an architectural 3D artist in search of photorealism should almost certainly make use of IES (Illuminating Engineering Society of North America) lights wherever possible. The IES have created a standard that allows manufacturers to record characteristics for the lights they make, such as colour temperature, falloff and visible light etc. These measurements are saved in a text file and made publicly available. 3D software (such as Cinema 4D) can then use these files to replicate a real world light exactly.

2. The 3D object needs to prevent light from hitting other objects in the scene and create shadows

Define Spatial Relationships

“When asking the audience to accept a scene that would otherwise strain its credibility, convincing shadow interaction can add an important piece of reality to help sell the illusion. If a production is supposed to be completely photorealistic, a single element such as a missing shadow could be all it takes to make your work look ‘wrong’ to the audience. Shadows serve the interest of adding realism and believability, even if there is no other reason for them in the composition” (Birn, )

Hard/Soft Shadows

When creating shadows, it is important to think about the source of light creating those shadows. A large light source that encompasses the entire scene would create a soft and even shadow, whereas a small distant source of light would create hard shadows. In nature, the sun casts hard shadows whereas the sky casts soft shadows.

Shadow Cookies

A cookie is used in the cinema to cast a shadow with a predefined shape. For example, if you wanted an actor to look like he was in a forest, you might cut the shapes of tree branches out of cardboard and place them between the key light and the actor. This would cast shadows that look like tress into the scene.

In 3D, if an artist is trying to composite a 3D object into a live scene, such as a photograph or video, shadow cookies cast over both the 3D model and the original scene can help to behind the two media together making it difficult for the audience to distinguish between them.

3. Light needs bounce off the 3D models in the form of reflections

Surface Texture

Although this project hasn’t gone into great depth in regard to surface textures, they are however extremely important when trying to achieve photorealism. All objects, except perhaps a black hole, have some amount of reflection, however, all have differing reflection properties. For example, a chrome lamp will have a very hard reflection, whereas a wooden picture frame will have a much softer reflection.


In addition to how hard or soft a reflection is, the amount of reflection on most objects will change depending on the angle you look at it. This is achieved in the 3D environment with the use of a Fresnel layer applied to the texture.

4. Other things to Consider


When creating textures for 3D models that will appear within a HDRI environment, it is helpful to use colours that match the hue and saturation of the HDR environment. Once a 3D image has been rendered, Hue and Saturation adjustments applied to the entire image help to blend the two media together.

Camera Artefacts

One problem with 3D renders is that everything produced is beautifully clean and sharp, as if it had been photographed with an extremely superior lens and sensor. In order to fool the human eye into believing something was captured with a camera, some of the unwanted by-products of cheaper lenses need to be replicated. This includes over/under exposure, chromatic aberration, noise and grain, vignetting and silvering. Stylistic choices such as depth of field should also be observed. And when shooting film or animation, other artefacts such as motion blur should also be added.


It has also been observed that in the 3D environment it is possible to create perfectly square edges which, if magnified an infinite number of times, would remain perfectly square. In the real world this is less often the case as edges tend to be worn and/or rounded. To make 3D objects appear real, hard/square edges should be avoided.

Randomness / Chaos

In addition to avoiding square edges, and perfectly clean/crisp renders, some of the random chaos of the real world should also be introduced. For example, rather than using an algorithm too create a brick wall that is perfectly straight and where every brick is exactly the same shape and size, there should be some variation. In addition to this, dirt should be added into a scene.


When creating dirt with a photorealistc effect, you should paint dirt onto a model by hand. Burns (p229) correctly states that you should“choose dirt maps that add specific, motivated detail to your objects. Think through the story behind all of the stains and imperfections on a surface – something has to cause any dirt, scratches, or stains that you would see”. 

Dirt should only be present on the surface of models, but should also be present floating in the environment in the form of dust, steam, or similar. Volumetric lighting is a good way to achieve this.


The final thing to consider is human perception.


It’s possible, although I haven’t as yet been able to prove or disprove this theory, that scale plays an important role in creating an illusion of photorealism. We know that if we see a 60 foot gorilla on the screen, it is most likely computer generated rather than a real photograph.


It appears that it is easier to fool the human brain into believing something is real if the brain has fewer points of reference. Take for example a human hand, creating a 3D hand that an audience believes is real is extremely difficult as it is something we spend a great deal of time looking at and accordingly we have extensive points of reference. If, on the other hand, I was to create 3D model and said it was a newly discovered creature that was found deep in the ocean, it would be easier to fool the mind into believing it was real as the brain has fewer points of reference.

That said though, it is still important to look to the real world for influence and reference when creating something that is fictional.

Improving on this Research

It’s difficult to find a way to improve upon this research, as has already been said, it appears that many other practitioners already share my view and any experiments that I have conducted myself are simply reinventing the wheel. Is it possible that all of the problems have already been overcome?

At present, I don’t feel I have explored the subject deeply enough to be able to offer any new insight that hasn’t already been discussed elsewhere.

What I propose to do now is produced some 3D renders that illustrate all of the points that I have made above. These renders will then be presented for assessment as a ‘body of work’. It is hoped that whilst creating some new renders, problems might arrise that haven’t already been tackled. However, I expect that this is more likely to happen if I approach a novel situation that other practitioners haven’t yet tried to create in 3D. This could be fun 😀

To try and streamline this process, I find that although I can build 3D models, it takes me a great deal of time. In light of this, I might try and create some scenes with simple geometry, such as a piece of jewellery, a planet, or perhaps to take a scene that I have created previously and try to make it more photorealistic.